GEOANZ #1 ADVANCES IN GEOSYNTHETICS 7-9 JUNE 2022 | BRISBANE CONVENTION & EXHIBITION CENTRE

ARISB-C

Performance of Geosynthetic Clay Liners in high-risk applications

Amir Shahkolahi BE (Civil) MEngSc (Civil & Env.), FIEAust, CPEng, RPEQ, NER, APEC Engineer IntPE(Aus), A.M.ASCE National Technical Manager

amir@globalsynthetics.com.au

Content:

GCL and calcium rich subgrades

GCL and non-standard liquids

GCL and high thermal gradient

GCL and arsenic rich tailings

GCL hydration depends on:

GCL and calcium rich subgrades:

Cr Mn Fe Co N Cu Zn Co Co As Se Br

W Re Os Ir PI Au Ho TI PO BI Po A

No Mo To Ru Rh Pd Ag Cd In So So Te I

Pr Nd Pm Sm Eu Gd To Dy Ho Er Tm Yo Lu

RE DO SO BE HS ME DS RO CO NO FI ME LY TO

Th Pa U No Pu Am Cm Bk Cf Es Fm Md No Lr

Subgrade pore water chemistry

Rowe and Abdelatty (2012)

- It is because of exchange of Ca++ from subgrade with Na in the GCL
- Calcium exchange => loss of bond water => loss of moisture => lower final water content

GCL hydraulic conductivity (@ 15kPa)

Higher confinement can change this

Lessons learned:

- The **chemistry** of **both** the **pore water in the subgrade** and **final permeant**. along with **subgrade water content** (and of course confinement) will all affect the final hydraulic conductivity of the GCL in many practical situations.
- <u>Final</u> water content and degree of saturation of the GCL is more important than maximum water content of the GCL.

• The higher the cations concentration in the subgrade, the lower the performance of the GCL:

GCL and non-standard liquids:

- Single-species salt solutions
- Multispecies inorganic salt solutions
- High/low PH permeants

GCL performance hydrated with Single-species salt solutions:

Effect of permeant: Shackelford et al. (2000)

Effect of concentration: Jo et al. (2001)

GCL performance hydrated with Single-species salt solutions:

ADVANCES IN GEOSYNTHETICS

-9 JUNE 2022 BRISBANE CONVENTION & EXHIBITION CENTRE

Permeability of prehydrated Bentofix® GCLs with approx. 4,000 - 5,000 g/m² bentonite) tested against various liquids and gases at approx. 30 kN/m² confining stress.

Lessons learned (Jo et al, 2001):

- For single-species salt solutions, at similar concentration, swell was largest with monovalent cations Na⁺, K⁺, and Li⁺ (NaCl, KCl, and LiCl solutions), smallest with trivalent cation La³⁺ (LaCl₃ solutions) and intermediate with divalent solutions (CaCl₂, MgCl₂, ZnCl₂, and CuCl₂).
- GCL specimens permeated with solutions containing divalent or trivalent cations had higher **hydraulic conductivity** than GCLs permeated with monovalent solutions or deionized water, unless the divalent or trivalent solutions were very dilute (≤0.01 M).
- Hydraulic conductivity increased as the **concentration** increased, and at high concentration (1 M) only small differences existed between hydraulic conductivities measured with all solutions.

GCL and multispecies inorganic salt solutions:

GCL and multispecies inorganic salt solutions:

Lessons learned (Benson et al., 2004)

- For multispecies inorganic salt solutions, <u>Ionic Strength</u> and the <u>relative abundance of</u> <u>monovalent and divalent cations (RMD)</u> in the permeant solution were found to influence the swell of the bentonite, and the hydraulic conductivity of GCLs.
- Higher RMD results in more swell and less hydraulic conductivity (Positive effect).
- Higher Ionic Strength results in less swell and higher hydraulic conductivity (negative effect).
- RMD has a greater influence for solutions with low ionic strength (e.g., 0.05 M), whereas concentration effects dominate at high ionic strength (e.g., 0.5 M).

GCL and high thermal gradient:

Applicable to:

- Brine ponds
- Solar ponds
- Heap-leach pads
- Landfills

- One side (top) of the liner has always higher temperature than the other side (bottom)
- This constant temperature gradient can cause:
 - <u>GM WITHOUT wrinkle</u>: GCL water vapour migrates out towards subgrade and GCL moisture content decreases (GCL suction from subgrade cannot catch up to balance the GCL moisture loss)
 - <u>GM WITH Wrinkle</u>: Same as the above, plus GCL moisture evaporation under the wrinkle void space

Southern and Rowe (2005)

15kPa Pressure

50kPa and 70kPa Pressure

• Even if the high temperature is maintained for relatively short time, dissociation can still occur (Zhou and Rowe, 2003)

• <u>Yu et al. (2018) – Brine pond:</u>

Experiment Control Parameters		GCL_A	GCL_B
Duration of Each Stage of Experiment	Subsoil moisture equilibrium	14 days	21 days
	GCL hydration	44 days	56 days
	Heating	39 days	28 days
Temperature applied during equilibrium	Тор	20)±1°C
and hydration stages	Bottom	20)±1°C
Temperature applied during heating	Тор	78	8±1°C
stage	Bottom	20)±1°C

(b)GCL_A Column II

	GCL initial water content	GCL Final water content after hydration from subgrade (room temperature, @ 20kPa)	GCL Final water content at the end of heating period
GCLA	9%	126%	7.5% (After 28 days heating @ 78°C)
GCLB	11%	141%	10% (After 56 days heating @ 78°C)

Solution:

- Higher subgrade initial water content (the higher, the better)
- Using Multicomponent GCL to prevent moisture loss
- Minimise the thermal gradient (the lower, the better):

Effect of thermal gradient in <u>double composite liners</u>:

Azad et al. (2012)

GCL 1 (Primary):

For to temperature > 40 degrees, GCL1 lost about 2/3rd of its moisture (into the geonet).

=> Deep cracks in GCL1 for top temperature > 40 degrees

After cracking, the GCL1 rehabilitation and performance (e.g. K value) depends on:

- The leaked liquid from a hole in the GM1 to rehydrate the GCL
- The confinement

Other risks?

- $\circ~$ Intrusion of the GCL into the geonet
- Reduction of geonet capacity
- Risk of bentonite erosion in the long term

GCL 1 after removing the cover geotextile

Deformed shape

Effect of thermal gradient in double composite liners:

Solution:

- Minimising the thermal gradient (The lower, the better)
- Trying to keep GCL1 hydrated
- High GCL1 initial water content
- Using multicomponent GCL for GCL1 with Coating/film facing the geonet (Ref.: GRI-GCL5)
 - GCL will not loos moisture
 - No GCL intrusion into the GN
 - No GCL erosion

Multicomponent GCL

Effect of thermal gradient in double composite liners:

Azad et al. (2012)

GCL 2 (Secondary):

Cracks occurred for <u>high top temperature</u> (> 45 degrees) and <u>low initial subgrade water content</u>

Solution:

- Higher subgrade initial moisture content
- Thicker Geonet for leak detection (Bouazza et al. 2017)- Larger gap can reduce the heat flow to the bottom liner and subgrade
- The coating in GCL1 can reduce the heat as well

GCL and Arsenic Rich Tailings

GCL and Arsenic Rich Tailings

• Hosney and Rowe (2013, 2014)

Parameter	GCL A	GCL B	GCL C	
Avg. bentonite mass/area (g/m ²)				
Measured	4491 (SD, 401; <i>n</i> = 14)	5009 (SD, 336; <i>n</i> = 14)	5238 (SD, 608; n = 14)	
MARV ^a	3660	4340 3660		
Carrier GTX				
Туре	Wc	NWSR ^c	W/P ^c	
Mass (g/m ²)	123 (SD, 13; $n = 4$)	253 (SD, 23; $n = 4$)	125 (SD, 12; $n = 4$)	
Cover GTX				
Туре	NW ^c	NW ^c	NW ^c	
Mass (g/m ²)	231 (SD, 17; $n = 4$)	235 (SD, 15; $n = 4$)	232 (SD, 19; $n = 4$)	
Structure				
Needle punched	Yes	Yes	Yes	
Thermally treated	Yes	Yes	Yes	

^cNW, nonwoven geotextile; NWSR, nonwoven scrim reinforced geotextile; W, woven geotextile; W/P, woven geotextile with a thin polypropylene film.

GCL A: Woven carrier GT

GCL B: Non-Woven Scrim Reinforced (SR) carrier GT

GCL C: Multicomponent (thin film attached) carrier GT

Effect of GCL type:

After Hosney and Rowe (2013, 2014)

K value at 11kPa - GCL B (Nonwoven SR Carrier GT)

S IN GEOSYNTHE

VE 2022 | BRISBANE CONVENTION & EXHIBITION CENTRE

- Direct contact with tailing

No direct contact with tailing

1.90E-10

(s) 1.70E-10 ≥ 1.50E-10

1.30E-10 0 1.10E-10

.<u>⊖</u> <u>−</u> 9.00E-11

K value at 11kPa - GCL A (Woven Carrier GT)

Direct contact

5

Effect of confinement:

After Hosney and Rowe (2013, 2014)

After 4 yrs with 15kPa

After 4 yrs with **11kPa**

Effect of GCL on Arsenic emission from tailings After Hosney and Rowe (2013, 2014):

			Arsenic concentration			
Soil directly GCL below GCL		Porewater (mg/L)		Solid phase (mg/kg)		
	Soil directly below GCL	Stress (kPa)	1 year	2 years	1 year	2 years
A: Wo	ven carrier GT					
	Tailings	8	3	2	29.4	35.5
		11	4	3	27.8	30.0
		15	3	6	26.9	30.9
B:Nor	n-Woven Scrim	Reinfor	ced (SR)) carrier	GT	
	Tailings	8	2	2	14.3	23.8
	0	11	2	3	14.1	20.8
		15	3	3	15.6	24.2
c:Mu	lticomponent (thin filn	n attach	ed) carri	er GT	
	Tailings	8	< 0.03	< 0.03	7.5	7.8
	0	11	< 0.03	< 0.03	6.5	6.9
		15	< 0.03	< 0.03	5.4	8.7

- Arsenic emission is reduced with increase in the GCL hydration/degree of saturation.
- Multicomponent GCL had highest reduction in Arsenic emission.

Lessons learned (Jo et al., 2001):

- Tailings chemistry can affect the performance of the GCL. GCL should not be in direct contact with tailings unless it is a multicomponent GCL.
- Arsenic emission from tailings can be reduced by higher GCL degree of saturation and using multicomponent GCLs

Summary:

- The chemistry of both the pore water in the subgrade and <u>final permeant</u>, along with subgrade water content (and of course confinement) will all affect the final hydraulic conductivity of the GCL in many practical situations.
- The higher the cations concentration in the subgrade, the lower the performance of the GCL.
- For single-species, the GCL performance depends on the type of the cations and concentration of cation (to a certain level).
- For multispecies inorganic salt solutions, <u>lonic Strength</u> and the <u>relative abundance of monovalent and</u> <u>divalent cations (RMD)</u> in the permeant solution were found to influence the swell of the bentonite, and the hydraulic conductivity of GCLs.
- Higher RMD results in more swell and less hydraulic conductivity (Positive effect), Higher Ionic Strength results in less swell and higher hydraulic conductivity (negative effect)

Summary:

- Thermal gradient between two sides of the lining system can result in desiccation cracking, even under high confinement, and even if the high temperature is maintained for relatively short time.
- For double composite liners, desiccation cracking of the primary GCL is more critical as the GCL is sitting on a geonet, and also is not in contact with moisture.
- Solution to thermal gradient desiccation cracking can be: higher subgrade initial water content, minimise the thermal gradient, or using Multicomponent GCL to prevent moisture loss
- Tailings chemistry can affect the performance of the GCL. GCL should not be in direct contact with tailings unless it is a multicomponent GCL.
- Arsenic emission from tailings can be reduced by higher GCL degree of saturation and using multicomponent GCLs

Thank you

Amir Shahkolahi

National Technical Manager amir@globalsynthetics.com.au

