The Role of Geosynthetics in Combatting the Effects of Global Warming

Tom Sangster Downley Consultants Ltd Switzerland

GEOANZ #1 ADVANCES IN GEOSYNTHETICS 7-9 JUNE 2022 | BRISBANE CONVENTION & EXHIBITION CENTRE

Already increases in:

- Extreme high temperatures
- Torrential rain
- Droughts
- Weather conditions conducive to wildfires

Efforts to adapt to a changing climate are imperation of maladaptation of maladaptation of maladaptation of the second se INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

Climate Change 2022

Impacts, Adaptation and Vulnerability

Summary for Policymakers

Working Group II contribution to the Sixth Assessment Report of the ntergovernmental Panel on Climate Change

Erftstadt, Germany 15 July 2021 196 dead (all Germany)

Zhengzhou, China

20 July 2021

12 dead

Lytton, Canada 30 June 2021 49°C previous day

Lismore NSW 28 February 2022 (Source:

(Source: The Guardian)

Brisbane 28 February 2022 (Source: ABC News)

Australia 2021 (Source: Univ. of Melbourne)

Australia 2020 (Source: REDUX Pictures)

Water Management

Water Management

GEDANZ #1 ADVANCES IN GEOSYNTHETICS

7–9 JUNE 2022 | BRISBANE CONVENTION & EXHIBITION CENTRE

LOTS OF CONCRETE

If concrete was a country it would be the third largest carbon emitter in the world

Guardian graphic | Source: UN environment, Chatham House

- The construction industry is responsible for 11% of the world's man-made CO₂ emissions
- The industry's carbon footprint is not shrinking
- The solution makes the problem worse
- This is the opposite of sustainable

Water Management

OR LOTS OF STONE

- Depletion of natural resource
- Large number of truck journeys
- May travel long distance from source
- Very large carbon footprint
- Again not sustainable

Water Management with Geosynthetics

Keep it out

Geocontainers

Water Management with Geosynthetics

Take it away

Geomats, GCCM & turf reinforcement mats

Water Management with Geosynthetics

Geomats & geotextiles Soft solutions & stormwater storage

Measuring the Environmental Benefits

LIFE CYCLE ANALYSIS (LCA)

- Cradle to grave
- Compares different methods of construction

Measuring the Environmental Benefits

LCA considers several aspects.:

- Greenhouse gas emissions
- Particulate matter formation
- Summer smog
- Eutrophication
- Abiotic resource depletion

- Acidification
- Land use related impacts
- Cumulative energy demand
 - non-renewable
 - & renewable

It is a central part of a larger sustainability analysis

Measuring the Environmental Benefits

4 Case Studies

- £1.5 billion (A\$2.7 billion) road project UK
- Offshore wind farm project Germany
- Reinforced concrete v. reinforced soil retaining wall
- Landfill capping drainage project

Case Study 1 – UK A14 Huntingdon to Cambridge

A14

7–9 JUNE 2022 | BRISBANE CONVENTION & EXHIBITION CENTRE

Carbon reduction target for site from specification – 20% 3 main contractor JV all represented on each section £1.5bn project 67 new bridges unction 750m long viaduct Alconbury Spittals iunction Woolley **New Ellington** junction Huntingdon ampton Hu Town centre improvements including removal of A14 viaduct Ellington Swavesey Bramptor Existing A14 22 Bar Hill Brampton Godmanchester iunction Fen Drayton Swavesey Proposed A14 D3 Buckden D3 The Offords Hilton Northstowe (proposed settlement Conington Godmanchester iunction Boxworth Lolworth Bar Hil Huntingdon Southern Bypass East Coast Mainline railway River Great Ouse widening S2 Single 2 lane carriageway 4 on-line improvements D2 Dual 2 lane carriageway Cambridge ambridge Northern Bypass D3 Dual 3 lane carriageway Local access roads D4 Dual 4 lane carriageway Girton interchange

Structural Drainage to Buried Structures

Comparison between three alternatives based on 55sqm of wall coverage (typical size of roll)

- 1. Geocomposite
- 2. Hollow concrete blocks filled with gravel
- 3. No-fines concrete

ANCES IN GEOSYNTHETICS

Construction Stage	ABG Deckdrain	Hollow concrete blocks and gravel	No-fines concrete
Part A - Removal of waste material	-	-	-
Part B - ECO ₂ e of imported materials	148 kg	1,220 kg	2,475 kg
Part C - CO ₂ e from transporting imported materials to site	2 kg	49 kg	524 kg
Part D - CO ₂ e emissions during Construction	-	520 kg	1,311 kg
Total CO2e	150 kg	1,789 kg	4,310 kg

results in CO2e emissions being reduced by

92% CO₂e reduction Geocomposite v hollow concrete blocks And it was lower cost \$\$\$!

Offshore Wind Farm Scour Protection - Germany

7–9 JUNE 2022 | BRISBANE CONVENTION & EXHIBITION CENTRE

Offshore Wind Farm Scour Protection - Germany

GSC = Geosynthetic Sand Containers Reduction in every environmental impact category is >80%

In addition using geosynthetics resulted in significant construction cost savings compared with the conventional approach of rock armour

Reinforced Soil Retaining Wall

Reinforced concrete retaining wall (strength class B300)

Soil wall reinforced with geosynthetics (LTDS 14 kN/m) "Average" of 3 different geogrids is modelled extruded stretched geogrids laid (welded) geogrids woven/knitted geogrids

Reinforced Soil Retaining Wall

without geosynthetic (4A)

geosynthetic (4B)

with

Water use

with geosynthetic (4B

Land

competition

7–9 JUNE 2022 | BRISBANE CONVENTION & EXHIBITION CENTRE

Landfill Capping Drainage

Landfill Capping Drainage

ADVANCES IN GEOSYNTHETICS

E 2022 | BRISBANE CONVENTION & EXHIBITION CENTRE

- Signficantly lower impact in all categories except land competition
- 95% reduction in water use
- 220 tonnes CO₂e reduction on area of 30,000 m²

Conclusions

Examples have shown how construction with geosynthetics are able to:

- reduce CO₂ and other emissions
- reduce natural resource depletion
- reduce energy demand (CED)
- reduce construction costs
- reduce the impacts for residents near construction

while protecting people's lives from the effects of climate change Geosynthetics contribute significantly to reducing the climate change impact of civil engineering works

The reductions in emissions and other environment impacts are huge – mainly greater than 80% and up to 95%

Geosynthetics are a key part of the solution – they enable the infrastructure needed to adapt to climate change to be created sustainably

We acknowledge the resources and images provided by courtesy

European Association of Geosynthetic product Manufacturers

NAUE GmbH & Co KG ABG Geosynthetics Ltd Concrete Canvas Ltd HUESKER Synthetic GmbH Tensar International

UK SWITZERLAND UAE

Thank you for your attention!

