

LINERS AND COVERS FOR RESERVOIRS - EVALUATION AND REPLACEMENT

Mike Sadlier Geosynthetic Consultants Australia sadlierma@gmail.com

GEOANZ #1 ADVANCES IN GEOSYNTHETICS 7-9 JUNE 2022 | BRISBANE CONVENTION & EXHIBITION CENTRE

08/12/2017 11:10

1

A 15 year old fPP-R cover in poor condition

A BURNER MUSER A WAR IN

Background 1

- Water reservoirs built or renovated in the last twenty years or so
- Liner and floating cover materials based on flexible polypropylene in both unreinforced and reinforced formats. fPP and fPP-R
- These materials have suffered over time mostly as a result of oxidation caused by aggressive sunlight exposure.

Background 2

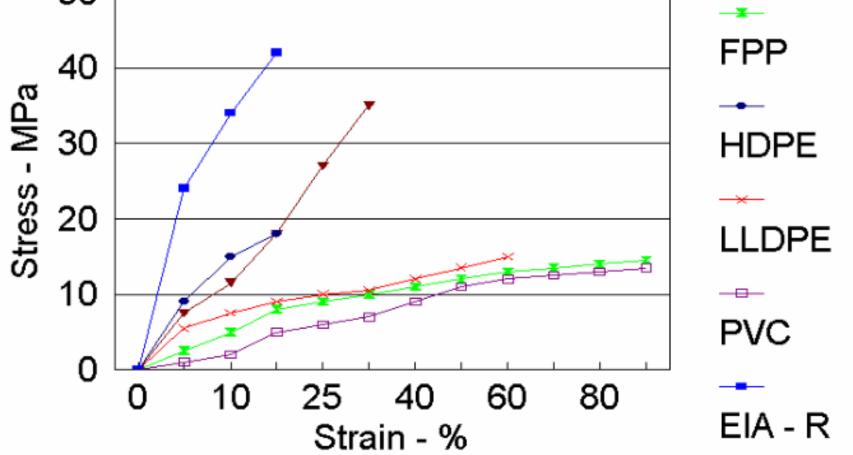
- Older fPP materials have become difficult to weld
- Larger samples may require repairs by bolts and battens which compromise cover flexibility.
- Often we can only take very small samples from places like weld flaps.
- There may be limited scope for tensile or other mechanical testing and we may have to rely on analytical testing such as OIT and HPOIT

Testing – OIT and HPOIT

- OIT and HPOIT effectively assess the remaining antioxidant capacity provided by additives
- Most fPP materials used hindered amines such that HPOIT becomes relevant.
- Once antioxidant capacity is depleted the base polymer may be subject to oxidation.
- Comparing OIT or HPOIT of the unexposed material to the exposed material value can give a good assessment of the remaining service life.

Other Testing

- Tensile and tear tests if samples can be obtained.
- Trapezoidal tear is especially useful for reinforced materials
- Carbonyl Index uses FTIR comparisons to help assess the extent of oxidation
- Microscopic examination of folded surfaces



Current Materials

- HDPE
- LLDPE
- PVC and PVC/EIA
- CSPE
- fPP and fPP-R

HDPE Development

Property	Test Method ASTM	GM 13 Value (1999)	GM 13 Value (2016)	GM 13 Value (2021)	"Enhanced" HDPE (2017)
Stress Crack Resistance	D 5397	200 hr.	500 hr.	500 hr	1000 hr. plus
Multiaxial bursting elongation at burst	D 5617	Not in GM13 ~15%	Not in GM13 ~15 to 20%	Not in GM13 ~15 to 20%	~45%
(a) Standard OIT	D 3895	100 min.	100 min.	100 min.	130 min.
(b) High Pressure OIT	D 5885	400 min.	400 min.	400 min.	700 min. plus

Ref: Sadlier and Frobel ICG11 Seoul 2018

LLDPE Development

Tested Property	Test Method	Unit	LLDPE to	Fortified
			GRI GM17	LLDPE
Density	ASTM D1505	g/cm (Min)	<0.939	<0.939
Notched Constant	ASTM D5397	hrs	N/A for	1000 hrs
Tensile Load			LLDPE	
Multi-Axial Tensile	ASTM D5617	%	30%	80%
Elongation				
Strength Retained	ASTM D4329	%	Not listed	90%
after 30,000 Hrs of QUV				
exposure				
Oxidation Induction Time	ASTM D3895	min	> 100	> 100
(OIT)				
High Pressure	ASTM D5885	min	>400	2000 min
Oxidation Induction Time				
(HPOIT)				

Polyvinyl Chloride (PVC or PVC/EIA)

- PVC is a naturally stiff or brittle material eg pipes
- Requires use of plasticisers and associated stabilisers to achieve a flexible geomembrane material.
- Reinforced PVC from both America and Europe that uses proprietary ketone ethylene ester (KEE) polymeric plasticisers that enable long term flexible performance under exposed conditions
- Some manufacturers are calling this an ethylene interpolymer alloy (EIA or Elvalloy) and are trying to ignore the PVC origins of the material
- PVC/EIA geomembranes maintain the flexibility advantages of PVC but have good durability and chemical resistance especially with extreme temperature
- Thermal welding is easy and effective with automatic and hand operated equipment
- Can be a taste and odour issue with water supply

AUVANCES IN GENSYN

Chlorosulphonated Polyethylene (CSPE)

- Previously known as Hypalon.
- Scrim reinforced for dimensional stability and strength.
- Seaming by both solvent bonding and thermal methods but it crosslinks or cures with exposure such that thermal welding becomes more difficult
- Once cured, modifications or repairs must use solvent based adhesive.
- CSPE provides very good chemical resistance and excellent UV exposure performance
- Has provided good service in the past for floating membrane cover systems

Polypropylene fPP

- Appeared on the scene in the 1990's in both reinforced and unreinforced forms
- Offered great promise because it was competitive and easily installed and repaired.
- During the 2000's formulations appeared to change and there were many performance issues in Australia and the Americas.
- After the GeoAmericas Conference in 2008 the GRI GM18 Specification was re-issued with a requirement for 20,000 hours of QUV accelerated UV testing
- Several manufacturers have completed this testing and more but unfortunately facility owners have been reluctant to use the new fPP.

ACCESS ISSUES

Sump with pump

Access to hatch

11-1-5


5.160

Pumps and Access

- Submersible pumps in floating sumps or baskets were common practice
- Safety concerns about access for maintenance and electrical safety have given rise to other solutions
- Some are using off cover pumps but long suction lines need help with priming
- Despite the installation of walkways there is a reluctance to have personnel working on floating covers

Typical Pump Arrangement submersible pump in sump or basket Off-cover pump with header tank for priming

Floating Cover Access Is this the solution?

Water Reservoir Leakage Rates

- Based on North American data Peggs and Giroud (ICG10 Berlin 2014) suggested action leakage rates of around 2300 litres/hectare/day for a water depth of 4 m
- Several recent renovation projects have seen PVC/EIA liners installed over geocomposite drain systems with existing compacted clayey soils, concrete liner or old geomembrane retained as a de facto secondary liner
- Sizes have ranged from 3000 sqm to 10,000 sqm with effective depths of 4 to 8 m
- Some used conductive geotextile to facilitate leak location survey by the Arc method and others had water introduced to enable dipole leak location survey
- Observed leakage rates were all less than 150 litres/hectare/day
- Point of weakness was seen to be old concrete structures and liner fixings to old structures

A 22 year old cover built with a hybrid of reinforced mPE and coextruded HDPE/LLDPE. Reinforced component no longer available Thank you

Especially to all those reservoir owners and operators who put up with extreme heat and cold, wild weather, bushfires and aggressive wildlife.

