

AGENDA

- 01) Aussie Liners and Covers for Mine Waste Williams
- 02) GCLs for Mine Waste Benson
- 03) Case Study
- 04) Geosynthetics for Tailings Disposal Stark
- 05) Tailings Drainage using Geocomposites Saunier
- 06) Geosynthetics for Evaporation Mining Stark

Master Class #3

Advances in Design and Construction with Geosynthetics for Mine Wastes and Closure

Australian Experience of Liners and Covers for Mine Wastes

Professor David Williams, UQ

(email: <u>D.Williams@uq.edu.au</u>)

GEOANZ #1 ADVANCES IN GEOSYNTHETICS 7-9 JUNE 2022 | BRISBANE CONVENTION & EXHIBITION CENTRE

Liners and covers applied to mine wastes

- Liners:
 - Evolution
 - Purpose
 - Determinants of liner performance and potential leakage rates
 - Example applications to mine wastes
- Covers:
 - Evolution
 - Purpose
 - Determinants of cover performance
 - Example applications to mine wastes

Evolution of liners beneath stored mine wastes

- Early mine waste storages had no designed liner
- This evolved to:
 - Selecting waste storage sites with natural clays (deep, uncracked)
 - Compacted clay liners (desiccation must be allowed for)
 - HDPE, GCL and bituminous geomembrane liners (under limited head, and exposure to UV and harsh chemistry/biology must be allowed for)
- Composite and leachate collection liners:
 - Combining benefits of clay and geosynthetics, and added safety of leachate collection and reduction of hydraulic gradient

Purpose of liners on mine wastes

- Stored mine wastes add to natural recharge, and have the potential to contaminate the receiving environment
- Liner systems have evolved from a desire to limit potential environmental impacts from stored mine wastes
- Key means by which liners may limit potential environmental impacts:
 - Limiting transport of any contaminants by reducing seepage; and/or
 - Enabling leachate collection of any contaminants or oxidation product; and/or
 - Maintaining saturated conditions within the mine wastes to limit oxidation

Determinants of liner performance

- Climate
- Nature and reactivity of mine wastes
- Topography, surrounding landforms and land uses
- Proposed final land use and water resources at risk
- Appropriate liner selection and design
- Controlled liner material selection and construction
- Limiting exposure of liner to environmental degradation
- Required liner design life and liner longevity

Natural recharge (Beekman et al. 1996)

Wetting-up of a waste rock dump

GEOANZ #1 ADVANCES IN GEOSYNTHETICS 7-9 JUNE 2022 | BRISBANE CONVENTION & EXHIBITION CENTRE

Increased rainfall infiltration into a waste rock dump

Tailings slurry deposition

Large decant pond

7-9

Small decant pond

Increased seepage due to tailings deposition

How effective are liners generally?

- Poorly-compacted clayey soils
- Compacted clayey soils
- Natural clayey soils and weathered rock
- HDPE, GCL and bituminous geomembrane liners
- Composite soil and geomembrane liners

Increasing effectiveness	
\searrow	

Potential leakage rates through liners

LINER	POTENTIAL LEAKAGE RATE			
	Under unit hydraulic gradient		Under 3 m head	
	(m/s)	(mm/year)	(m/s)	(mm/year)
Natural clay/weathered rock (>3 m)	10 ⁻⁹	32	10 ⁻⁹	32
Well-compacted clay (0.5 nWill pass ~:	3 times rainfall!	315	6 x 10 ⁻⁸	1,890
Poorly-compacted clay (0.5Will pass al	l stored water!	3,150	6 x 10 ⁻⁷	18,900
HDPE geomembrane (1.5 mm):				
Intact	10 ⁻¹⁵	0.0003	2 x 10 ⁻¹²	0.6
In practice Will pass most rainfall	10 ⁻¹¹	0.3	2 x 10 ⁻⁸	600

Liners for heap leach pads

Hil

• Early heap leach pads were not lined, but lining (generally with an HDPE geomembrane) is now best practice, to recover as much pregnant solution as possible

Liners for mine water ponds

- Early mine water ponds were not lined
- Geomembrane liners are now common: to store pregnant solutions, to retain process chemicals and water, and to protect the environment

HDPE-lined slope and compacted tailings pond base

Liners for tailings storage facilities

- Tailings storage facilities were not lined in the past
- Lining (and drainage) is becoming more common, especially beneath the decant pond and where clay is in short supply, to protect surface and groundwater resources, and to meet regulatory requirements
 ADVANCES IN GEOSYNTHETICS

lihl

Bituminous geomembrane on tailings dam slope

Sub-aqueous and sub-aerial (spigot) tailings disposal

Bituminous geomembrane seepage pond liners

Fully HDPE-lined tailings facility (rare)

Fully HDPE-lined tailings cell in North Queensland

Fully HDPE-lined tailings cell

Compacted clay, GCL and geotextile on tailings dam

Effectiveness of composite liner

Upstream compacted tailings and geotextile

HDPE-lined emergency spillway

Embankment construction using geotubes

Geotextiles used in underdrainage with riser

Geotextile used to reduce erosion and wave action

Some observations of geosynthetic use

- Geosynthetics are more likely to be used in tailings dam construction in wetter regions of Australia, particularly on Tasmania's West Coast:
 - ~2,000 mmpa rainfall Evenly spread persistent "drizzle"
 - On existing tailings dams, liners will be restricted to the slopes of upper raises
 - Bituminous geomembranes and GCLs are preferred over HDPE because they are easier to install in the cool, wet climate
 - GCLs are typically laid on a geotextile for protection and may be overlain by compacted "clay" – A composite liner
 - Compacted tailings may be used in the upstream zone, with a geotextile separator, and rock in the downstream zone to lower the phreatic surface

Waste rock dumps?

Waste rock dumps are rarely lined

Tailings facilities and some waste rock dumps have underdrains that may be geotextilewrapped, although consideration must be given to the potential for these to clog physically (addressed by applying filter criteria), chemically and/or biologically

Lining pit slopes

GFNAN7

 Pit slopes may be flooded, are rarely lined, although coating or lining has been considered to limit the oxidation of exposed sulfides

While liners used in mining applications have tended to follow landfill practices, they have not gone as far, rarely involving double geomembranes and leachate collection

Evolution of covers on mine wastes

- Early mine waste covers were intended to support revegetation
- This evolved to:
 - Rainfall-shedding (mounded) covers, comprising a sealing layer (compacted clay and/or geosynthetic), and a growth medium
 - Non-shedding covers to store rainfall infiltration and release it through evapotranspiration, known as:
 - Store and release (for use on mine wastes in dry climates) Williams *et al.* (1997)
 - Evapotranspirative (ET), Phytocap, etc. (for use on municipal wastes in dry climates) – ACAP Benson and Albright (1998)
 - Capillary break layers to limit uptake of contaminants (difficult to get right!)

Simple vegetative covers directly on tailings

Natural revegetation of coal tailings

GEOANZ

Planted vegetation on gold tailings

Purpose of covers on mine wastes

- Cover systems have evolved from a desire to limit potential environmental impacts from stored mine wastes
- Key means by which covers may limit potential environmental impacts are:
 - Limiting potential oxidation of stored mine wastes by restricting oxygen ingress (best achieved by storage below water, in wet climates), and/or
 - Limiting transport of any contaminants or oxidation products to the environment via rainfall runoff or seepage, or wind (applicable in dry climates)

Determinants of mine waste cover performance

- Climate
- Nature and reactivity of the mine wastes
- Topography, surrounding landforms and land uses
- Proposed final land use or ecological function
- Appropriate cover selection and design
- Controlled cover material selection and cover construction
- Cover maintenance and sustainability

Selection of cover type based on climate

- Cover systems for mine waste tops are intended to limit oxygen ingress and/or net percolation of rainfall
- Water covers in wet climates (e.g., Canada and the wet tropics
- Rainfall-shedding covers in moist climates
- Robust store and release covers in dry climates (e.g., Australia)

GEOANZ #1 ADVANCES IN GEOSYNTHETICS 7-9 JUNE 2022 | BRISBANE CONVENTION & EXHIBITION CENTRE

Rainfall-shedding

lih.

Store and release

Influence of climate on cover performance

- In dry or seasonally dry climates, covers should:
 - Prevent exposure of stored mine wastes to air-borne mobilisation
 - Limit net percolation of rainfall into underlying mine wastes to limit transport of any oxidation products
- In wet climates, covers should either:
 - Shed incident rainfall
 - Drain excess rainfall infiltration, or
 - Infiltrate alkalinity from a thick alkaline cover to neutralise any acidity generated by underlying wastes

Australian rainfall variability

Variability ("droughts and flooding rains") > 10 x Climate change trends Rain \rightarrow apathy; drought \rightarrow awareness, concern & panic; relieved by subs. rain

"Droughts to flooding rains"

HDPE-lined drain and cover on toxic tailings

Conclusions

- Stored mine wastes increase rainfall infiltration:
 - A waste rock dump is like a "sponge", initially allowing about 50% rainfall infiltration, dropping to an average 20%, compared with say 10% naturally
 - Operation of a tailings storage facility can increase rainfall infiltration from say 10% to 50%
- Liners (geomembranes) are now common for heap leach pads, for mine water ponds, and increasingly for tailings storage facilities:
 - To recover as much pregnant solution as possible from heap leach pads
 - To protect the environment from potential contamination by mine or tailings waters

Conclusions

- The effectiveness and longevity of liners (and other geotextiles) needs to carefully be considered
- Geomembrane and composite liners for tailings storage facilities:
 - Necessarily focussed on the upstream slope of existing tailings storage facilities, relying on the consolidated tailings to limit base seepage
 - Initially concentrated on sealing the decant area
 - With fully-lined new facilities now being considered
- Use of geosynthetics in rehabilitation has been limited, to date involving sealing particularly contaminating tailings, less so waste rock

AGENDA

- 01) Aussie Liners and Covers for Mine Waste Williams
- 02) GCLs for Mine Waste Benson
- 03) Case Study
- 04) Geosynthetics for Tailings Disposal Stark
- 05) Tailings Drainage using Geocomposites Saunier
- 06) Geosynthetics for Evaporation Mining Stark

Using GCLs in Liner Systems for Ore Processing and Mine Waste Containment

Craig H. Benson, PhD, PE, NAE

chbenson@chbenson.org

GEOANZ #1 ADVANCES IN GEOSYNTHETICS 7-9 JUNE 2022 | BRISBANE CONVENTION & EXHIBITION CENTRE

Topics for Today's Session

- What are geosynthetic clay liners (GCLs)?
- When do conventional GCLs with sodium bentonite (NaB) have low hydraulic conductivity, and when are they more permeable?
- What are bentonite-polymer composite GCLs, and why are they more effective than conventional GCLs with aggressive liquids?
- How can I determine if a GCL will have the low hydraulic conductivity needed for my liner application?

GCLs – Thin Factory-Manufactured Clay Liners

Geosynthetic Clay Liners Expedite Design and Construction & Preserve Airspace

Conventional Liner System

Geosynthetic Clay Liner (GCL) GEOCOMPOSITE HDPE GEOMEMBRANE DRAINAGE LAYER (60 mil) WASTE HDPE GEOMEMBRANE WASTE SAND (300 mm) (60 mil) **PROTECTIVE LAYER** GEOSYNTHETIC CLAY LINER (GCL) PEA GRAVEL (300 mm) $(k = 1 \times 10^{-9} \text{ cm/sec})$ PROTECTIVE SOIL LAYER (LCS) DRAINAGE LAYER (600 mm) COMPACTED CLAY (600 mm) $(k = 1 \times 10^{-7} \text{ cm/sec}) \text{ LAYER}$ PREPARED SUBGRADE PREPARED SUBGRADE

Figures courtesy M. Othman, Geosyntec Consultants

Alternative Design with

GCLs permit rapid and cost-effective construction, as well as savings in air space. Particularly advantageous in clay poor areas.

What makes a GCL Impervious?

- For low hydraulic conductivity, sodium (Na) bentonite granules swell to from a gel (paste).
- Gel must be maintained to retain low hydraulic (~ 10⁻¹¹ m/s) conductivity.
- If granules do not swell and form gel, higher hydraulic conductivity (>10⁻⁷ m/s).

Mechanisms Controlling Hydraulic Conductivity of Bentonite

- When bentonite swells sufficiently, intergranular pores swell shut and hydraulic conductivity is low, as flow occurs through nanoscale pores (< 100 nm).
- When swell is constrained, and intergranular pores remain open, the hydraulic conductivity is higher as flow through microscale pores.
- Sensitive to the size of granules.

Bentonite is Primarily Montmorillonite, a Special Clay

d001 indicative of swell

Exchangeable cations include Na⁺, K⁺, Ca²⁺, Mg²⁺, and other cations in the solution being contained.

Bentonite Swelling – Geochemistry Matters!

- When interlayer contains monovalent cations (e.g., Na+), significant swelling ("osmotic swelling") can occur, resulting in small inter-particle pores & low hydraulic conductivity.
- When the interlayer contains divalent cations (e.g., Ca²⁺, Mg²⁺), interlayer swell limited to 1 nm ("crystalline swelling"), resulting in larger interparticle pores and high hydraulic conductivity.

Bentonite Swelling, Solution Chemistry, and Hydraulic Conductivity

GRI GCL-1 Swell Test

- Na-Bentonite in DI water (monovalent, Na⁺) – crystalline & osmotic swell.
- Nanoscale pores and low hydraulic conductivity.

Na-Bentonite in calcium (Ca²⁺) rich water (divalent) – crystalline swelling only.

Visible pores and high hydraulic conductivity

ASTM D5890 Swell Index (SI) – Free Swell

ASTM D5890 Swell Index Test

Miles bentonite, Queensland

Hydraulic Conductivity and Swell Index (SI)

Jo, H., Katsumi, T., Benson, C., and Edil, T. (2001), Hydraulic Conductivity and Swelling of Non-Prehydrated GCLs Permeated with Single Species Salt Solutions, *J. of Geotech. and Geoenvironmental Eng.*, 127(7), 557-567.

- Normalized hydraulic conductivity to chemical solution (K_c) to DI water (K_{DI}).
- Normalized SI by volume of dry bentonite (2 g \approx 0.7 mL).
- Unique to specific bentonite granule size distribution, mineralogy, and surface chemistry.
- For this bentonite, SI must be > 15 mL/2g for K_c< 10^{-11} m/s

Hydraulic Conductivity Testing (ASTM D6766)

 ASTM D6766 (Standard Test Method for Evaluation of Hydraulic Properties of Geosynthetic Clay Liners Permeated with Potentially Incompatible Aqueous Solutions) or equivalent.

Important testing considerations:

- > Prehydration condition
- > Effective stress
- » Hydraulic equilibrium
- > Chemical equilibrium

Hydraulic Conductivity Testing to Confirm Suitability: May Go Slowly – Plan Ahead!

For solutions with **modest ionic strength**, **hydraulic conductivity changes slowly**. **Plan ahead for long test times** to reach chemical equilibrium.

Aggressive Industrial Liquids & Leachates

$$I = \frac{1}{2} \sum_{i=1}^{n} c_{i} z_{i}^{2}$$

I = ionic strength c_i = conc. ith ion z_i = valence ith ion RMD = $\frac{M_{M}}{M}$

$$\mathsf{RMD} = \frac{\mathsf{M}_{\mathsf{M}}}{\sqrt{\mathsf{M}_{\mathsf{D}}}}$$

- M_m = total molarity monovalent cations
- M_D = total molarity polyvalent cations

Ionic Strength is Dominant Variable for Most Industrial Liquids

- Hydraulic conductivity strongly & directly related to ionic strength of leachate.
- Modest sensitivity to RMD of leachate

What if my Conventional NaB GCL is Too Permeable? Bentonite-Polymer Composite GCLs

(aka PMGs or polymer-modified GCLs)

Bentonite

Polymer

- Bentonite functions in less concentrated leachates, swelling and blocking flow channels.
- Polymer functions in more concentrated leachates, filling channels between bentonite granules for which swelling is modest.

Scalia, J. and Benson, C. (2016), Polymer Fouling and Hydraulic Conductivity of Mixtures of Sodium Bentonite and a Bentonite-Polymer Composite, *J. Geotech. Geoenvironmental Eng.*, 04016112.

Types of Bentonite-Polymer Mixtures

adapted from: Kim S. and Palomino, A. (2011), Factors influencing the synthesis of tunable clay-polymer nanocomposites using bentonite and polyacrylamide, Applied Clay Science, 51 (2011) 491-498

Dry Mixture: Granular Bentonite and Polymer Particulate

7-9 JUNE 2022 | BRISBANE CONVENTION & EXHIBITION CE

GEO

Types of Polymers in BPC GCLs

Cross-Linked Polymer

Linear Polymer

Superabsorbent polymers also used (baby diapers).

Cross-Linked Polymer

Hydrated gel granules evident as separate phase.

GEOANZ #1 ADVANCES IN GEOSYNTHETICS 7-9 JUNE 2022 | BRISBANE CONVENTION & EXHIBITION CENTRE

Linear Polymer

No gel visibly evident as separate phase but woven in pore space.

Mechanisms Controlling Hydraulic Conductivity of BPC GCLs

BPCs are Composite Materials – BPCs Not Surface-Modified Clays

Polymer Hydrogel Clogging Mechanism

Bentonite-Polymer GCLs & Bauxite Liquors

- Solid Symbols: NaB GCLs, Open Symbols: BPC GCLs, Numbers: polymer loading.
- BPC GCLs have lower hydraulic conductivity than NaB GCLs at all ionic strengths.
- BPC hydraulic conductivity varies with product and polymer loading.

Li, Q., Chen, J., Benson, C., and Chen, D. (2020), Hydraulic Conductivity of Bentonite-Polymer Composite Geosynthetic Clay Liners Permeated with Bauxite Liquor, *J. Geotextiles and Geomembranes*, 49, 420-429.

Bentonite-Polymer GCLs & Copper Heap Leach Solution

- Acidic divalent leachate: I = 303 mM, RMD = 0.02^{0.5}, pH 2.2, A_r = 1.7.
- BPC GCLs have lower hydraulic conductivity than NaB GCL at all overburden pressures.
- BPC hydraulic conductivity varies between products.

Screening Tests to Evaluate BPC GCLS

Key Take Away Messages

- Hydraulic conductivity of conventional NaB GCLs controlled by swelling of bentonite granules – intergranular pores must swell shut to achieve low hydraulic conductivity. Strongly influenced by geochemistry.
- Ionic strength ("total concentration") of solution most important factor affecting swelling of bentonite and hydraulic conductivity of NaB GCLs in industrial solutions, but RMD can be important as well.
- For aggressive leachates, BPC GCLs can have low hydraulic conductivity when NaB GCLs are too permeable. Polymer gel must clog and be retained in intergranular pores.
- Swell index tests useful for screening NaB GCLs for suitability; swell index not effective for BPC GCLs (addresses swelling, but not clogging). New tests in development.
- Hydraulic conductivity testing will be required and long test times are common.
 Plan ahead.

Papers on GCLs can be downloaded here:

https://uwmadison.box.com/s/ewo1532zm0uf63k5r5or4fegaib4pt8f

AGENDA

- 01) Aussie Liners and Covers for Mine Waste Williams
- 02) GCLs for Mine Waste Benson
- 03) Case Study
- 04) Geosynthetics for Tailings Disposal Stark
- 05) Tailings Drainage using Geocomposites Saunier
- 06) Geosynthetics for Evaporation Mining Stark

COLETANCHE

BITUMINOUS GEOMEMBRANE FOR WATERPROOFING CIVIL ENGINEERING STRUCTURES

COLETANCHE

GEOANZ #1 ADVANCES IN GEOSYNTHETICS 7-9 JUNE 2022 | BRISBANE CONVENTION & EXHIBITION CENTRE

JERISE A

AGENDA

- 01) Aussie Liners and Covers for Mine Waste Williams
- 02) GCLs for Mine Waste Benson
- 03) Case Study
- 04) Geosynthetics for Tailings Disposal Stark
- 05) Tailings Drainage using Geocomposites Saunier
- 06) Geosynthetics for Evaporation Mining Stark

Outline

- Stability Issues
- Bottom Liner Systems
- Installation
- Summary

Tailings Beach and Drainage

Tailings Beach and Drainage

Saturated Tailings & Flow Failure

Fundao Tailings Dam

BBC News Photographs

Size of Tailings Dams

What is largest dam?

- Earth volume Syncrude Tailings Dam–706,320,000 yd³
- Concrete volume Three Gorges- 35, 506,315 yd³/Grand Coulee-11,975,520 yd³
- Earth height Nurek Dam, Tajikistan 984 feet
- Concrete height Jinping-1 Dam, China 1,001 feet

http://www.usbr.gov/lc/hooverdam/History/essays/biggest.html

228 Case Histories

Causes of failure

Stark, T.D., Moya, J., and Lin, J. (2020)."Rates and Causes of Tailings Dam Failures," ACCEPTED *Geotechnical and Geological Engineering Journal*, October, 2021.

Failure Modes and Timing

Released Volume Every 10 Years

Engineering Journal, October, 2021.

Tailings Dam Construction

Tailings Dam Construction

Outline

- Stability Issues
- Bottom Liner Systems
- Installation
- Summary

Operating Hard Rock Tailings Impoundments

Tailing Impoundment	Location	Mining Company	Opening Date	Material Mined	Tailing Type	Liner System	Leachate Collection System	Impoundment Size
Pend Oreille Mine	Pend Oreille County, Washington	Teck Cominco American, Inc.	2007	Zinc and Lead	Slurry	Double liner, two 60 mil HDPE geomembranes with geocomposite drainage layer between for leak detection	N/A	20 acres
East Boulder Mine	Sweet Grass County, Montana	Stillwater Mining Co.	2002	Paladium and Platinum	Slurry	100 mil HDPE geomembrane	N/A	N/A
Hertzler Ranch Tailings Impoundment	Nye, Montana	Stillwater Mining Co.	2000	Paladium and Platinum	Slurry	60 mil HDPE geomembrane	N/A	146 acres
Kennecott Bingham Canyon Mine	Magna, Utah	Rio Tinto Group	1988	Copper, Gold, Silver, and Molybdenum	Slurry	Thick Natural Clay	N/A	9,000 acres
Bullfrog Mine Facility	Beatty, Nevada	Barrick Bullfrod Inc.	1989	Gold	Slurry	12" thick amended clay soil (5% bentonite) with PVC membrane liner Perimeter and radial underdrains		320 acres
McCoy/Cove Mill	Battle Mountain, Nevada	Newmont Gold Company	1989	Gold	Slurry	30 mil VLDPE over prepared sub-base	Drainage piping network covered by uncompacted waste ore placed above a 2' thick protective bedding covering the liner system	400 acres

Table 1. Summary of Operating United States Hard Rock Tailings Impoundments

Proposed Hard Rock Tailings Impoundments

Table 2. Summary of Proposed Hard Rock Tailings Impoundments (In Design or Permitting)

Tailing Impoundment	Location	Mining Company	Material Mined	Proposed Liner System	Leachate Collection System	Impoundment Size
KSM Project	British Columbia	Seabridge Gold	Gold	Single LLDPE geomembrane	N/A	Very Large
Resolution Copper	Arizona	Rio Tinto	Copper	Single LLDPE geomembrane	N/A	Very Large
La Granja Project	Peru	Rio Tinto	Copper	Single LLDPE geomembrane	N/A	Very Large
Pinion Mill Project	Montrose County, Colorado	Energy Fuels Resources Corporation	Uranium	Double Composite Liner System: two 60 mil HDPE geomembranes with geocomposite drainage layer between for leak detection underlain by a GCL	Partial drainage layer on embankment slopes for protection against wind uplift. Base of impoundment does not include a drainage layer.	Small to Medium
Selwyn Project	Yukon	Shuiuhan Mining	Lead and Zinc	Single LLDPE geomembrane	N/A	Small to Medium
Long Canyon Mine	Elko County, Arizona	Newmont	Gold	Single 80 mil HDPE geomembrane with 2 foot thick gravel drainage layer over a prepared sub-grade.	24" to 30" layer of coarse gravel and waste rock with HDPE collection piping over the entire footprint.	Large
Eagle Mine	Marquette County, Michigan	Rio Tinto Group	Copper and Nickel	Single Composite Liner System: 60 mil HDPE geomembrane underlain by GCL	12" thick granular drainage layer with underdrains	Small
Pascua Lama Mine	Argentina	Barrick Gold	Gold	Single LLDPE geomembrane underlain by a low permeability clay layer	N/A	Large
3 3	S	2 3	c			0

Proposed Hard Rock Tailings Impoundments

Tailing Impoundment	Location	Mining Company	Opening Date	Material Mined	Tailing Type	Liner System	Leachate Collection System	Impoundment Size
White Mesa Mill	Blanding, Utah	Denison Mines Corp.	2011	Uranium	Slurry	Double Composite Liner System: two 60 mil HDPE geomembranes with geocomposite drainage layer between for leak detection underlain by a GCL	Slimes Drain System: consists of discreet collection headers and laterals composed of a PVC pipe surrounded by drainage aggregate and woven geotextile	130 acres
AA- Block Tailing Disposal Facility	Elko County, Nevada	Barrick Goldstrike Mines, Inc Betz Post, Meikle, and Rodeo	1986	Gold	Slurry	Natural Clay	Coarse rock drainage blanket over entire footprint	85 acres
North Block Tailing Disposal Facility	Elko County, Nevada	Barrick Goldstrike Mines, Inc Betz Post, Meikle, and Rodeo	1993	Gold	Slurry	Single Composite Liner System: 60 mil HDPE geomembrane underlain by compacted low permeability soil with 10 ⁻⁶ cm/sec hydraulic conductivity	Coarse rock drainage blanket underlying the area where the supernatant pond lies	530 acres
Greens Creek Mine – Original Tailings Impoundment – Stage I	Admiralty Island, Alaska	Hecla Mining Co.	1989	Silver	Dry Stack Filtered Tailings	Combination of natural clay and 80 mil HDPE geomembrane in areas not underlain by natural clay	A series of blanket and finger drains to direct seepage	30 acres
Greens Creek Mine – Stage II Expansion	Admiralty Island, Alaska	Hecla Mining Co.	2003	Silver	Dry Stack Filtered Tailings	80 mil HDPE geomembrane underlain by natural clay	Coarse rock drainage blanket	62 acres
Midas Mine	Elko County, Nevada	Newmont	N/A	Gold	Slurry	60 mil HDPE geomembrane overlain by a drainage layer	Coarse rock drainage blanket interbedded with collection piping throughout the entire footprint area	N/A

Table 2. Summary of Proposed Hard Rock Tailings Impoundments (In Design or Permitting)

60 mil/1.5 mm HDPE

60 mil/1.5 mm HDPE

Dimensional Stability

Dimensional Stability

Interconnected Wrinkles • R.K. Rowe et al. (2012 & 2017):

Rowe et al. (2012). Can. Geotech. J. **49**: 1196–1211 Rowe et al. (2017). J. Geotech. Geoenviron. Eng., 2017, 143(8): 04017033-1 to 04017033-8

Interconnected Wrinkles

- R.K. Rowe et al. (2012 & 2017):
- Typical wrinkle width: 0.2 to 0.3 m (0.7 to 1.0 ft)
- Typical wrinkle height: 0.06 to 0.2 m (0.2 to 0.7 ft)
- Wrinkle area: 2 to 30% of entire area
- Typical wrinkle length if 5% of area has wrinkles: 200 m (655 ft) – interconnected
- Wrinkles dominate behavior

Rowe et al. (2012). Can. Geotech. J. **49**: 1196–1211 Rowe et al. (2017). J. Geotech. Geoenviron. Eng., 2017, 143(8): 04017033-1 to 04017033-8

Tailings Dam Protection

Photograph by David Gilbert - Peru

Summary

- Stability Issues consider dynamic loads
- Drainage
- Tailings Dam Failure cause environmental impact
- Geosynthetics

Tailings drainage using multilinear drainage geocomposites

Pascal Saunier, P.Eng. AFITEX-Texel inc. psaunier@afitextexel.com

AGENDA

- 01) Aussie Liners and Covers for Mine Waste Williams
- 02) GCLs for Mine Waste Benson
- 03) Case Study
- 04) Geosynthetics for Tailings Disposal Stark
- 05) Tailings Drainage using Geocomposites Saunier
- 06) Geosynthetics for Evaporation Mining Stark

CONTENT

4 families of Drainage Geocomposites

Description of Multilinear Drainage Geocomposites (MIDG)

Use of MIDG in Mining Applications

- Double Lined Pond
- Cycloned Sand Dam
- Dam Expansion
- Final Closure
- Dewatering in TSF
- Dry Stack

Conclusion

4 FAMILIES OF DRAINAGE GEOCOMPOSITES

Standard Guide for Specifying Drainage Geocomposites¹

4 FAMILIES OF DRAINAGE GEOCOMPOSITES

- Largely used products all over the world
- Different manufacturers
- Different resign quality, ribs shape, aperture
- The geotextiles are heat bonded to the core
- Sensitive to intrusion and creep
- Cheap products in average

4 FAMILIES OF DRAINAGE GEOCOMPOSITES

- High performance net products
- Few manufacturers
- Good resign quality, large aperture
- The geotextiles are heat bonded to the core
- Less sensitive to intrusion and creep than bi-axial
- More expensive products in average
4 FAMILIES OF DRAINAGE GEOCOMPOSITES

- More and more used products
- Very few manufacturers
- Different heights of studs
- The geotextile is manually placed on top of the studs
- Sensitive to intrusion and creep
- Uneasy product to install

Standard Terminology for Geosynthetics¹

multi-linear drainage geocomposite, *n*—a manufactured product composed of a series of parallel single drainage conduits regularly spaced across its width sandwiched between two or more geosynthetics.

Multi Linear drainage geocomposite: DRAINTUBE®

Drainage geocomposite with drainage conduits regularly spaced between two geotextiles instead of a geonet core

Drainage conduits:

- Perforated PP mini-pipes,

Main characteristics:

- Generally Large Rolls 4 m x 75+ m
- Various Geotextiles layers (from 100 g/m² to 2000 g/m²)
- Conduits with high compressive resistance (if mini-pipes)
- Transmissivity function of the quantity of conduits vs thickness of core
- Light and Flexible product
- No peel adhesion issue
- No creep, No geotextile intrusion
- Large options in filtration

Installation

Installation

Welding, Sewing, additional overlap

Installation

Welding, Sewing, additional overlap

Connection to collector trench / ditch

Quick Connect System

Quick Connect System

DRAINTUBE is also included in **ASTM D7931** Standard Guide for Specifying Drainage Geocomposites.

Standard Guide for Specifying Drainage Geocomposites¹

8. Reduction Factor of Creep

8.1 Depending on the site-specific situation and applied stresses, the drainage core of the geocomposite might creep which leads to a reduction of its in-plan flow capacity. The creep phenomenon is core dependent. Some products, like multilinear drainage geocomposites, may not be sensitive to creep when confined into a soil matrix because of their core structures.

GSI White Paper #4 (Koerner) Reduction Factors (RFs) Used in Geosynthetic Design

$$Q_{allow} = \frac{Q_{ult}}{RF_{in} \cdot RFcr \cdot RFcc \cdot RFbc}$$

 q_{allow} = allowable (or design) flow rate or transmissivity,

 q_{ult} = ultimate (or as-manufactured) flow rate or transmissivity,

RF_{IN} = reduction factor for intrusion of geotextiles or geomembranes into the core of drainage product,

 RF_{CR} = reduction factor for creep of the drainage core or covering geosynthetics,

 RF_{CC} = reduction factor for chemical clogging of drainage core, and

 RF_{BC} = reduction factor for biological clogging of drainage core.

GEOANZ #1 ADVANCES IN GEOSYNTHETICS 7-9 JUNE 2022 | BRISBANE CONVENTION & EXHIBITION CENTRE

GSI White Paper #4 (Koerner) Reduction Factors (RFs) Used in Geosynthetic Design

$$Q_{allow} = \frac{Q_{ult}}{RF_{in} \cdot RFcr \cdot RFcc \cdot RFbc}$$

 q_{allow} = allowable (or design) flow rate or transmissivity,

 q_{ult} = ultimate (or as-manufactured) flow rate or transmissivity,

RF_{IN} = reduction factor for intrusion of geotextiles or geomembranes into the core of drainage product,

RF_{CR} = reduction factor for creep of the drainage core or covering geosynthetics,

 RF_{CC} = reduction factor for chemical clogging of drainage core, and

 RF_{BC} = reduction factor for biological clogging of drainage core.

GEOANZ #1 ADVANCES IN GEOSYNTHETICS 7-9 JUNE 2022 | BRISBANE CONVENTION & EXHIBITION CENTRE

Reduction factor for creep and geotextile intrusion

Function of the shape of the drainage core

For geonet drainage core

Reduction of the drainage capacity under load

Figure 2.3 Transmissivity data vs. normal loads for a triplanar geonet laminated with a 270g/m² nonwoven on each side with soil as a top boundary and aluminum plate lower boundary (ASTM D4716).

Reduction factor for creep and geotextile intrusion

Function of the shape of the drainage core

For DRAINTUBE

Arching effect when confined in soil

Reduction factor for creep and geotextile intrusion

Function of the shape of the drainage core

For DRAINTUBE

Arching effect when confined in soil

Reduction factor for creep and geotextile intrusion

- Function of the shape of the drainage core
- For geonet drainage core
- Reduction of the drainage capacity over time

Creep Curves for a 250 mil geonet

Reduction factor for creep and geotextile intrusion

Function of the shape of the drainage core

For DRAINTUBE

Arching effect when confined in soil

Published related reference

Assessment of the Resistance of Drain Tubes planar drainage geocomposites to high compressive loads Eric Blond (SAGEOS) and Pascal Saunier (AFITEX-Texel), ICG 2010

Run-off drainage / Gas venting on final covers

OPTIMIZED SOLUTION USING DRAINTUBE

Case Study : HSPP, BC – 2014 / 15

#1

Case Study : Gibraltar, BC – 2010

Case Study : McKay River - Suncor, AB – 2013

Case Study : Eustis Mine, Qc - 2008 - 2010

Case Study : CMM, MB - 2011

Tailings dewatering in TSF

Case Study : North American Palladium, ON - 2017

 Coarser particles falling first = creation of a 'perfect' filter

(a) after 5 minutes

(b) after 15 minutes

(c) after 2 h 45 min

(d) after 66 hours

GEOANZ #1 ADVANCES IN GEOSYNTHETICS 7-9 JUNE 2022 | BRISBANE CONVENTION & EXHIBITION CENTRE

(2) 6"Ø PERFORATED CPE PIPE

(3) RUB SHEET CONSISTS OF 60-MIL HDPE GEOMEMBRANE

(4) DRAINTUBE GEOCOMPOSITE 340P FT1 GEOCOMPOSITE BY AFITEX-TEXEL GEOSYNTHETICS INC. (SEE NOTE 2)

(5) 1"Ø PERFORATED DRAINTUBE""MINI-PIPES" (SEE NOTE 2)

through Draintube

Case Study : Copper Mountain, BC – 2012

+ comment on Mount Polley disaster

Double-lined Ponds

DRAINTUBE Conductive

Water Lance Method (ASTM D7002)

Arctest Method (ASTM D7953)

Dipole Method (ASTM D7007)

Dry Stack

Granular Solution in Fishbones / Fingerdrains

Optimized Solution

+ video pose manuelle

+ video pose pelle

CONCLUSION

- Drainage is a critical path for long term behaviour in mining construction
- Environmental footprint is also an everyday concern
- Lots of great solutions for TSF and minings apps in general
- Multi-linear Drainage Geocomposites are part of them with important advantages :
 - No creep
 - No Intrusion
 - Large adaptability with filters
- Case studies can be found in all sectors/areas of the mining industry

Thank you for your attendance

Pascal Saunier, P.Eng. AFITEX-Texel inc. psaunier@afitextexel.com

GEOANZ #1 ADVANCES IN GEOSYNTHETICS 7-9 JUNE 2022 | BRISBANE CONVENTION & EXHIBITION CENTRE

JARISE A

AGENDA

- 01) Aussie Liners and Covers for Mine Waste Williams
- 02) GCLs for Mine Waste Benson
- 03) Case Study
- 04) Geosynthetics for Tailings Disposal Stark
- 05) Tailings Drainage using Geocomposites Saunier
- 06) Geosynthetics for Evaporation Mining Stark

Outline

- Evaporation Mining
- Liner System Leakage
- Wrinkle Behavior & Leakage
- Thermal Expansion
- Installation
- Summary

Salar de Atacama

- Elevation ~2,287.5 m (7,500 ft)
- 3,000 km²
- Ancient seabed
- Underground brine reservoirs
- Recharged by snow melt
- Lithium, K (fertilizer), Boric Acid, and NaCl
- Dry desert windy & rarely cloudy
- Great evaporation
- One-year yields 1 m of salt

Massive mining evaporation ponds constructed in Chilean desert

The Salar de Atacama in Chile is the site of the largest PVC geomembrane installation in the world—more than 16 million ft.² utilized in mining operations since 1996.

By Dominic Berube,¹ Patrick Diebel,² Andre Rollin,³ and Timothy D. Stark⁴

26 www.geosyntheticsmagazine.info

Location

199

Geosynthetics

- Ponds 3 m (10 ft) deep, 915 m (3000 ft) x 305 m (1000 ft)
- Pond area = 275,000 to 1,000,000 m²
- ~40 million m² of PVC GM

(Acevedo-Soriano and Cortes, 2021)

Geomembranes

- Exposed geomembrane lined ponds
- Ponds hold pumped brine
- 0.5 to 0.75 mm (20 to 30 mil) thick GM panels
- Panel size = 305 m (1000 ft) x 15 m (50 ft)
- Panel area = 4,651 m² (50,000 ft²)

Acevedo-Soriano and Cortes, 2021)₂₀₁

Geomembrane Importance

- Repair costs
- Lost revenue

Photos from: de Melo et al. (2021) GeoStrata March/April

202

Geosynthetics

lik.

- 6-7 panels deployed/day
- Panel area = 4,651 m² (50,000 ft²)
- 30,250 m² (325,000 ft²) of GM deployed/day
- Panels seamed using thermal wedge welders
- Field seams are tested non-destructively

Salar de Atacama

• Harsh environment

Geomembranes

• Panels weigh 3.2 tons (6,600 lbs)

Factory v. Field Seaming

Clean & Controlled

Dirty & Uncontrolled

Factory v. Field Seaming

Clean & Controlled

Panel Layout Diagram

1	10	
9	18	

209

Geomembranes

- 410 rolls/panels shipped
- 1,271,738 m²

Geosynthetics

• Over 20 years of exposure

Outline

- Evaporation Mining
- Liner System Leakage
- Wrinkle Behavior & Leakage
- Thermal Expansion
- Installation
- Summary

- Darcy's Law:
- *Q* = kiA
- Q = Seepage/Leakage Rate (m³/sec)
 - k = hydraulic conductivity
 - i = hydraulic gradient
 - A = area of seepage

- Darcy's Law:
- *Q* = kiA
 - A = area of defect if Intimate Contact

214

Defect Leakage

• Giroud (2017) – 5th de Melo Lecture - Brazil

$$Q = 0.21 * \left[1 + 0.1 \left(\frac{h_{w-GM}}{t_{soil}} \right)^{0.95} \right] * a^{0.1} * (h_{w-GM})^{0.9} * k^{0.74}$$

Q = Leakage rate through one hole (m³/sec)

a = hole area (m²)

t_{soil} = thickness of compacted soil (m)

k_{soil} = hydraulic conductivity of underlying compacted soil (m/sec)

 h_{w-GM} = hydraulic head on geomembrane (m); regulation = 0.3 m

Defect Leakage

Hole	Hole	Holes	Int Contact	Int Contact
Area*	diameter	per ha	Leakage Q	Leakage Q
<u>(mm²/m²)</u>	<u>(mm/m)</u>	<u>(ha⁻¹)</u>	<u>(m³/sec/ha)</u>	<u>(lphd)</u>
1.0/1x10 ⁻⁶	1.0/0.001	4	1.56x10 ⁻⁸	1.35
2.0/2x10 ⁻⁶	2.0/0.002	4	1.68x10 ⁻⁸	1.45
3.0/3x10 ⁻⁶	3.0/0.003	4	1.75x10 ⁻⁸	1.51
4.0/4x10 ⁻⁶	2.0/0.002	4	1.80x10 ⁻⁸	1.55

Giroud (2017) – 5th de Melo Lecture – Brazil

- 4 holes per hectare
- hole area of 4 mm²

GEOANZ #1 ADVANCES IN GEOSYNTHETICS 7-9 JUNE 2022 | BRISBANE CONVENTION & EXHIBITION CENTRE **Other Input Parameters**

- $h_{GM} = 0.3 \text{ m}$
- $k_{soil} = 1 \times 10^{-9} \text{ m/sec}$
- $t_{soil} = 0.6 \text{ m}$

216
Outline

- Evaporation Mining
- Liner System Leakage
- Wrinkle Behavior & Leakage
- Thermal Expansion
- Installation
- Summary

Intimate Contact

- Wrinkles as small as 0.5" do not flatten
- Wrinkles fold over and create creases

Soong, T.-Y., and Koerner, R. M. 1998. "Laboratory study of high density polyethylene waves." *Proc., 6th Int. Conf. on Industrial Fabrics Association International, Geosynthetics,* St. Paul, Minn., 301–306.

Wrinkle Behavior

• R.K. Rowe et al. (2012 & 2017):

Interconnected Wrinkles

• R.K. Rowe et al. (2012 & 2017):

Interconnected Wrinkles

- R.K. Rowe et al. (2012 & 2017):
- Typical wrinkle width: 0.2 to 0.3 m (0.7 to 1.0 ft)
- Typical wrinkle height: 0.06 to 0.2 m (0.2 to 0.7 ft)
- Wrinkle area: 2 to 30% of entire area
- Typical wrinkle length if 5% of area has wrinkles: 200 m (655 ft) – interconnected
- Wrinkles dominate behavior

Rowe et al. (2012). Can. Geotech. J. **49**: 1196–1211 Rowe et al. (2017). J. Geotech. Geoenviron. Eng., 2017, 143(8): 04017033-1 to 04017033-8

 $Q = L \left[2b^* k_b + 2(k_a H_L \theta)^{0.5} \right] h_d / H_L$

GEOANZ #1 ADVANCES IN GEOSYNTHETICS 7–9 JUNE 2022 | BRISBANE CONVENTION & EXHIBITION CENTRE

<u>Rowe (1998):</u>

- Q: flow through GM2b : width of wrinkleL: wrinkle length
- *k_b*: hyd. conductivity of CSL/GCL below wrinkle
- k_a : hyd. conductivity in contact with GM h_d : Head loss $(h_d = h_w + H_L)$ h_w : Water/leachate level
- H_{I} : Soil liner thickness
- *θ*: transmissivity b/t GM and compacted soil liner (CSL)/GCL

- Giroud (1997)
- Good Contact is:
 - GM w/as few wrinkles as possible on smooth compacted soil
 - Rowe (1998) θ = 1.6x10⁻⁸ m²/s
- Poor Contact is:
 - GM w/a number of wrinkles on rough compacted soil
 - Rowe (1998) θ = 1.0x10⁻⁷ m²/s

Wrinkle	Wrinkle	Holes	Leakage	Leakage
Length	Width	per	Q	Q
<u>(m/ha)</u>	<u>(m)</u>	<u>Wrinkle</u>	<u>(m³/sec/ha)</u>	<u>(lphd)</u>
60	0.2	1	4.7x10 ⁻⁸	4.1
230	0.4	1	2.5x10 ⁻⁷	22.0
500	0.6	1	7.1x10 ⁻⁷	60.9
1000	0.8	1	1.7x10 ⁻⁶	149.0

Intimate contact & four holes/hectare ~1.5 lphd One wrinkle & one hole ~ 100*no wrinkle

<u>Rowe (2012):</u>

GCL $k_b = 5 \times 10^{-11}$ m/s, GCL $k_a = 2 \times 10^{-10}$ m/s, $H_L = 0.01$ m, $\theta = 3 \times 10^{-11}$ m²/s; CSL $k_b = 1 \times 10^{-9}$ m/s, CSL $k_a = 2 \times 10^{-10}$ m/s, $H_L = 0.6$ m, $\theta = 1.0 \times 10^{-7}$ m²/s;

By: Timothy D. Stark, Ph.D., P.E., D.GE, F.ASCE	FG	
Fabricated Geomembrane Institute	Fabric	cated prane
University of Illinios at Urbana-Champaign	Inst	titute e
STEP ONE (General Calculation	s & Summary)	
For a pond with the following dimensions: Top Width	400	feet
Pond Top Length	600	feet
Pond Depth,	25	feet
Total/overall volume of the pond is:	31,852,428.2	gallons
with a compacted soil hydraulic conductivity of *	1.00E-07	cm/sec
and a geomembrane hydraulic conductivity of **	1.00E-12	cm/sec
Leakage through the compacted soil liner is:	2,286.4	gallons/day
Leakage through a geomembrane is ONLY:	1.4	gallons/day
Cost of water is:	US\$25,000.00	/acre-foot
Lost Money due to Compacted Soil Leakage:	64,675.4	\$/year
Lost Money due to Geomembrane Leakage:	0.0	\$/year

*Compacted soil hydraulic conductivty is 1x10-7 cm/sec based on Subtitles D and C landfill requirements

**Geomembrane hydraulic conductivty ranges from 1x10-10 to 1x10-14 cm/sec for typical products based on vapor transmission testing

STEP TWO (Detailed Information)					
Leakage Rate Calculator from a Water Pond					
Input Parameters					
Pond Geometry	Depth	=	25	ft.	
	Pond Freeboard	=	2	ft.	Water Below Pond Surface
	Pond Top Width	=	400	ft.	
	Pond Top Length	=	600	ft.	
	Side Slope Geometry				
	н		v		
	3	:	1		
Material Properties	Compacted Soil	=	5	ft.	Thickness
	Hydraulic Conductivity, k	=	1.00E-07	cm,	/sec
	Geomembrane	=	1	in.	Thickness
	Hydraulic Conductivity, k	=	1.00E-12	cm,	/sec
	Geomembrane Defects				
	# of holes per hectare	=	4	wit	h "high Inspection"
	Number of holes	=	9	For	the total leakage Area
	Area of a hole	=	4.00E-06	m ²	
	Hydraulic head on GM	=	0.3	m	
	Wrinkle dimensions		Width (ft.)		Length (ft.)
	HDPE	=	0.85		655
	LLDPE	=	0.5		300
	PVC	=	0.1		12.5
	Flexible PP	=	0.15		15
	Head Loss	=	27	ft.	
	The second set of a		1.6E-08	$m^2/$	s Good Contact
	Transmissivity	=	1.00E-07	$m^2/$	s Poor Contact

228

- Observed leakage 100 to 1,000* greater than calculated
- Causes localized stresses and strains
- Location of stress cracks (Soong and Koerner, 1997)
- Interference with drainage above
- Bentonite migration if GCL present
- Increase mining damage potential
- Leak location surveys = ?

- HDPE
- Large wrinkles ~17.8 to 22.9 cm (7 to 9 inches) tall
- 3 to 6 m (10 to 20 feet) apart
 impede flow
 stress cracking

- Low stiffness
- PVC Geomembranes
- Small & Close together wrinkles
- 2.5 to 5 cm (1 to 2 inches) tall
- Not Connected

GENA

• Giroud & Wallace (2016) – Geo-Americas

• Giroud & Wallace (2016) – Geo-Americas

Unreinforced GM Polymer	Coeff. Thermal Exp.	GM Bending Modulus	GM Density	GM Thick- ness	Inter- face friction	Wrinkle Height, H _w
<u>(Black)</u>	<u>(0C-1)</u>	<u>(MPa)</u>	<u>(kg/cm³)</u>	<u>(mm)</u>	<u>(deg)</u>	<u>(mm)</u>
HDPE-S	1.9x10 ⁻⁴	250	940	1.5	10	92
LLDPE-S	1.9x10 ⁻⁴	200	850	1.0	10	58
fPP	8.9x10 ⁻⁵	150	750	1.0	22	27
PVC#1-Grey	1.3x10 ⁻⁴	125	700	0.75	20	12

 $g = 9.81 m/s^2$ $\Delta T = 45^{\circ}C$

HDPE ~ 8* higher wrinkle than PVC

GM

Outline

- Evaporation Mining
- Liner System Leakage
- Wrinkle Behavior & Leakage
- Thermal Expansion
- Installation
- Summary

Guideline for Desert Installation of Fabricated Geomembrane Panels

Fabricated Geomembrane Institute

August 12, 2021

Fabricated Geomembrane Institute

University of Illinois at Urbana-Champaign Guideline for Desert Application of Fabricated Geomembrane Panels Urbana, IL 61801 3/31/2022

235

Rolling, Packaging, and Shipping

- Pallet should extend past finished dimensions
- Even panels
- Strap cushions
- Good labeling
- Pallet should extend past finished dimensions
- No protruding objects or nails
- Weather resistant covering
- Store in shade (10°C (50°F) and 40°C (105°F))

GM Deployment

- No rocks or salt crystals larger than 9.5 mm (3/8")
- No water or mud
- Wind speed ~ 5 km/hour (3 mph) & not > 30 km/hour (18 mph)
- Deploy when ambient and GM temperatures are 10°C (50°F) to 40°C (105°F)
- Unroll or unfold 1/3 (100 m) & allow acclimation 3 pauses if 300 m
- Embossed/textured side in contact with subgrade
- Unsealed flap in wind direction
- Ballast GM quickly

<u>Summary</u>

- Evaporation mining increasing
- Minimum GM
- No defects
- Leak location
- Wrinkles:
 - Remain
 - No intimate contact
 - Pond liquid
 - Increase leakage
 - Impact leak location surveys

(Acevedo-Soriano and Cortes, 2021)

GEOANZ #1 ADVANCES IN GEOSYNTHETICS 7-9 JUNE 2022 | BRISBANE CONVENTION & EXHIBITION CENTRE

ARISEA